

UNIVERSIDAD AUTÓNOMA DE ZACATECAS

Facultad de Ingeniería

Av. López V. No 801, 98000, Zac.

Nota.- Agréguense tantas líneas como sea necesario al interior de las tablas. Grábese el archivo con otro nombre identificador.

Area de : INGENIERÍA CIVIL	
Materia : ELECTRICIDAD Y MAGNETISMO	
Pertenece a la academia de :FISICA	Créditos: 8

Ciencias básicas	[X]	Ciencias de la ingeniería []	Ingeniería aplicada []
Complementaria	[]		
Antecedentes :			
ALGEBRA		CALCULO DIF. E INTEGRAL	ANALISIS VECTORIAL
Consecuentes :			
Horas/semana :6.0		Teoría [4.5]	Laboratorio o práctica [1.5]
Elaborado :		Ultima revisión :AGOSTO 2001	Próxima revisión :

Objetivo general del curso :INTEGRACION DE TEMAS AFINES EN DONDE INTERVIENE CAMPO ELECTRICO Y CAMPO MAGNETICO, PARA EL DESARROLLO DE LA TEORIA ELECTROMAGNETICA EN SU CUNJUNTO, LA PROGRAMACION TRATA SEPARADAMENTE LOS TEMAS DE ELECTRICIDAD Y MAGNETISMO, QUE AL FINAL SE ENLAZAN EN LOS TEMAS DE LA RELACION DE LORENTZ Y LAS LEYES O ECUACIONES DE MAXWELL PARA EL ELECTROMAGNETISMO.

TEMAS	Hrs/sem
1. NOMBRE LEY DE COULOMB	
ObjetivoESTUDIO DE LA CARGA Y LA MATERIA	
1.1 INTRODUCCION Y ANTECEDENTES DEL ELECTROMAGNETISMO	10
1.2 ESTRUCTURA ATOMICA	
1.3 CARGAS ELECTRICAS	
1.4 CONDUCTORES Y AISLADORES	
1.5 LEY DE COULOMB	
1.6 CUANTIZACION Y CONSERVACION DE LA CARGA	
etc.	
2. NOMBRECAMPO ELECTRICO	
Objetivo ESTUDIO DEL CAMPO ELECTRICO Y ANALOGIAS CON CAMPO GRAVITACIONAL	

2.1 EL CAMPO ELECTRICO] 8
2.2 LA INTENSIDAD DEL CAMPO ELECTRICO E	
2.3 LINEAS DE FUERZA	
2.4 UNA CARGA PUNTO EN UN CAMPO ELECTRICO	
2.5 GRUPO DE CARGAS Y DISTRIBUCION DE CARGA EN UN CAMPO ELECTRICO	
2.6 DIPOLO EN UN CAMPO ELECTRICO	
etc.	
3. NOMBRE POTENCIAL ELECTRICO	
Objetivo ESTUDIO DEL POTENCIAL ELECTRICO SU CARÁCTER DE ESCALAR	
RESPECTO DEL CAMPO ELECTRICO COMO VECTORIAL	
3.1 POTENCIAL ELECTRICO	8
3.2 POTENCIAL Y CAMPO ELECTRICO	ľ
3.3 POTENCIAL DEBIDO A UNA CARGA PUNTO	
3.4 DIFERENCIAS DE POTENCIAL	
3.5 UN GRUPO DE CARGAS PUNTO Y UNA DISTRIBUCION DE CARGA	
3.6 SUPERFICIES EQUIPOTENCIALES	
3.7 GRADIENTE DE POTENCIAL	
3.8 CALCULO DE E A PARRTIR DE V	
3.9 EL GENERADOR ELECTROSTATICO	
3.10 ENERGIA POTENCIAL ELECTRICA	
etc.	1
4. NOMBRE LEY DE GAUSS	
Objetivo ESTUDIAR LA PRIMERA LEY DEL ELECTROMAGNETISMO Y SU INCLUSION EN	
LA LEYES DE MAXWELL.	
4.1 FLUJO DEL CAMPO ELECTRICO	5
4.2 LEY DE GAUSS	
4.3 LA LEY DE GAUSS Y LA LEY DE COULOMB	
4.4 UN CONDUCTOR AISLADO	
4.5 APLICACIONES DE LA LEY DE GAUSS	
etc.	
5. NOMBRE CORRIENTE Y RESISTENCIA	
Objetivo ESTUDIO DE LA CORRIENTE ELECTRICA DIRECTA Y EL PRIMER DISPOSITIVO	
DE UTILIZACION DE LA ENERGIA ELECTRICA LA RESISTENCIA.	
5.1 INTENSIDAD Y DENSIDAD DE CORRIENTE	6
5.2 RESISTENCIA, RESISTIVIDAD Y CONDUCTIVIDAD	
5.3 LEY DE OHM	
5.4 TEORIA DE LA CONDUCCION ELECTRICA (EN LOS METELES)	
5.5 INTERCAMBIO DE ENERGIA EN UN CIRCUÌTO ELECTRICO (ÉFECTO JOULE)	
etc.	
6. NOMBRE FUERZA ELECTROMOTRIZ Y CIRCUITOS	-
Objetivo EL ESTUDIO DE LAS FUENTES DE FUERZA ELECTROMOTRIZ Y LOS CIRCUITOS	BASICOS
SERIE Y PARALELO	
6.1 FUERZA ELECTROMOTRIZ	12
6.2 RELACIONES INTENSIDAD VOLTAJE	
6.3 RESISTENCIAS EN SERIE Y PARALELO	
6.4 CIDCUITOS SIMDLES (CALICULO DE LA CORRIENTE)	

6.4 CIRCUITOS SIMPLES (CALCULO DE LA CORRIENTE)
6.5 LEYES DE KIRCHHOFF
6.6 DIFERENCIAS DE POTENCIAL

6.7 REDES ELECTRICAS 6.8 MEDICIOM DE CORRIENTES Y DIFERENCIAS DE POTENCIAL (AMPERIMETRO Y VOLTIMETRO) 6.9 EL POTENCIOMETRO	
7 NOMBRE CAPACITORES Y DIELECTRICOS Objetivo: EL ESTUDIO DE SEGUNDO DISPOSITIVO DE UTILIZACION DE LA ENERGIA ELEC 7.1 CAPACITORES 7.2 CAPACITANCIA 7.3 CAPACITORES DE LAMINAS PARALELAS 7.4 CAPACITANCIA EN SERIE Y PARALELO 7.4 EFECTO EN UN DIELECTRICO 7.5 TEORIA MOLECULAR DE LAS CARGAS INDUCIDAS EN UN DIELECTRICO 7.6 LOS DIELECTRICOS Y LA LEY DE GAUSS 7.7 ALMACENAMIENTO DE ENERGIA ELECTRICA EN UN CAMPO ELECTRICO 7.8 CIRCUITO R-C	CTRICA 8
8 NOMBRE CAMPO MAGNETICO Objetivo: ESTUDIO DEL CAMPO MAGNETICO Y SU RELACION CON EL CAMPO ELECTRICO 8.1 MAGNETISMO 8.2 FLUJO MAGNETICO 8.3 EL CAMPO MAGNETICO Y LAS LINEAS DE INDUCCION 8.4 FUERZA MAGNETICA SOBRE UNA CORRIENTE 8.5 MOMENTO SOBRE UNA ESPIRA DE CORRIENTE 8.6 RELACION DE LORENTZ 8.7 EL EFECTO HALL 8.8 LOS CICLOTRONES	O 10
9 NOMBRE LEY DE AMPERE Objetivo; EL ESTUDIO DEL CAMPO MAGNETICO INDUCIDO Y LA INDUCCION MAGNETICA 9.1 LEY DE AMPERE 9.2 EL CAMPO MAGNETICO EN LA VACINDAD DE UN ALAMBRE LARGO 9.3 LINEAS DE INDUCCION MAGNETICA 9.4 DOS CONDUCTORES PARALELOS 9.5 CAMPO MAGNETICO PARA UN SOLENOIDE 9.6 LEY DE BIOT-SAVART	5
10 NOMBRE LEY DE FARADAY Y ECUACIONES DE MAXWELL Objetivo: LA CONCLUCION DE CAMPO ELECTRICO Y CAMPO MAGNETICO EN LA TEORIA ELECTROMAGNETICA EL ESTUDIO DEL TERCER DISPOSITIVO DE UTILIZACION DE LA EI ELECTRICA Y LAS ECUACIONES O LEYES DE MAXWELL 10.1 FUERZA ELECTROMOTRIZ INDUCIDA 10.2 LEY DE LA INDUCCION DE FARADAY 10.3 LEY DE LENZ 10.4 CAMPOS MAGNETICOS VARIABLES CON EL TIEMPO	NERGIA 6

10.5 CORRIENTES ALTERNANTES

10.6 EL BETATRON 10.7 LA INDUCTANCIA 10.8 CIRCUITO RLC 10.9 LEYES DE MAXWELL.

- 11.- NOMBRE: OPTICA
- 11.1.- Naturaleza y propagación de la luz
- 11.2.- Óptica geométrica
- 11.3.- Polarización, interferencia y Difracción
- 11.4.-Estudio y aplicación de la emisión Lasser

Bibliografía

1.FISICA VOL 2 VERSION AMPLIADA DAVID HALLIDAY, ROBERT RESNICK Y KENNETH S. KRANE

CECSA 2. FISICA

SEARS REMANSKI YOUNG

AGUILAR

3. FISICA GENERAL

VANDER MERWE

SERIE SCHAUMS

Mc GRAW HILL

4. CIRCUITOS ELECTRICOS

S.A. EDMINISTER

SERIE SCHAUMS

Mc GRAW HILL

5. FISICA PARA CIENCIAS E INGENIERIA VOL. 2

S.P. Mc KELVEY, HOWARD GROTCH

HARLA

6. FISICA VOL. 2

R.P. FEYNMAN

FONDO EDUCATIVO INTERAMERICANO S.A.

etc.